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Abstract: A terahertz (THz) reflect-array is proposed. Dual circularly polarized (left- and 

right-hand-circular-polarizations) collimated beams are independently manipulated. In our 

model, the left-hand-circularly-polarized and right-hand-circularly-polarized beams reflect at 

23-degrees along the y-direction and x-direction respectively. © 2020 The Author(s)

1. Introduction

Terahertz (THz) reflectarrays, which redistribute energy from the impinging free-space propagating waves to

achieve the targeted near-field or far-field patterns, including beam collimation, beam focusing and Bessel 

beams, have had considerable recent attention [1-3]. Tailoring the THz wavefront consists of shaping the THz 

beam and manipulating its polarization states. Beam-shaping can be easily achieved by designing a spatial phase 

response across a reflect-array [4] and the Pancharatnam-Berry phase can be used to manipulating two 

orthogonal polarizations, namely, left-hand circular polarization (LHCP) and right-hand circular polarization 

(RHCP). Nevertheless, the Pancharatnam-Berry phase can only control the LHCP and RHCP symmetrically. To 

independently manipulate the LHCP (| ⟩=[1  ]) and RHCP (| ⟩=[1 - ]), the surface of the reflect-array should 

provide two uncorrelated phase profile, namely,  L( , ) ( L for short) for LHCP and  R( , ) ( R for short) for 

RHCP.  For the LHCP and RHCP input, we can design a birefringent surface with target output polarization 

state of | ⟩* and (| ⟩*, where * denotes the complex conjugate of the input polarization state. Therefore, the 

original system can be expressed as: 
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Combining (1) and (2), the Jones Matrix  ( , ) can be expressed as: 
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Then, the Jones matrix  ( , ) can be decomposed into canonical form [5]: 
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Here, P can be regarded as a rotation matrix for the matrix Λ, the phase shifts are   ( , ) = [ L+  R]/2 and 

  ( , ) = [ L+ R]/2 −   and the rotation angle is  ( , ) =[ L− R]/4. Therefore, to achieve the full 

manipulation of the LHCP and RHCP, the unit cells should provide the a phase circle of 2π while keeping a π 

phase difference between   ( , ) and  y( , ). 

2. Design and Result

Based on the theory above, a THz reflect-array operating at 0.32 THz is proposed. The configuration of the 

phasing element is shown in Fig. 1 (a). Both the upper cross-bar and the full ground are made of gold with a 

spacer (dielectric constant of 2.33 and loss tangent of 0.0007) with a thickness of 100 um between them. Si 

located at the bottom is used as a wafer. This design can be realized by making use of a cyclo olefin copolymer 

(COC) microfabrication technique [6].  The reflection phases of x-pol and y-pol with different lengths of L1 are 

shown in Figs. 2 (b) and (c), respectively. The reflection phases of x-pol and y-pol can be independently 

controlled by  
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Fig. 1 (a) Configurations of the phasing element. (b) 3-bit phasing elements. 
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         (a)                                                                (b) 

Fig. 2 (a) Reflection phase of ox-polarization with different lengths of the L1. (b) Reflection phase of oy-

polarization with different lengths of the L1.  
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                     (a)                                                           (b)                                                     (c)     

Fig. 3. (a) Simulated 3-D radiation pattern. (b) Simulated 2-D radiation patterns at xoz-plane. (c) Simulated 2-D 

radiation patterns at yoz-plane. In (b) and (c), LHCP is the black line, RHCP is the red line. 

adjusting the length of L1 and L2. Therefore, we can easily select 3-bit units (each unit provides π reflection 

phase difference between x- and y-polarized incident waves and the total 3-bit units provide the phase circle of 

2π), as shown in Fig. 1 (b), to build the reflect-array with WR-03 rectangular waveguide as a feeding source 

(linearly polarized). The RHCP and LHCP collimated beams are designed to reflect along with different 

directions, as shown in Fig. 3. Specifically, the RHCP beam is tilted 23-degree along ox-direction and the LHCP 

beam is tilted 23-degree along oy-direction. The main-beam gain will drop and sidelobe gain will increase if 

larger deflection angles are adopted. The maximum deflection angles are 53-degree for both LHCP and RHCP 

beam (above this angle, the sidelobe gain will exceed the main-beam gain).  
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