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ABSTRACT: Highly controlled synthesis of upconversion nanoparticles
(UCNPs) can be achieved in the heterogeneous design, so that a library
of optical properties can be arbitrarily produced by depositing multiple
lanthanide ions. Such a control offers the potential in creating nanoscale
barcodes carrying high-capacity information. With the increasing creation
of optical information, it poses more challenges in decoding them in an
accurate, high-throughput, and speedy fashion. Here, we reported that the
deep-learning approach can recognize the complexity of the optical
fingerprints from different UCNPs. Under a wide-field microscope, the
lifetime profiles of hundreds of single nanoparticles can be collected at
once, which offers a sufficient amount of data to develop deep-learning
algorithms. We demonstrated that high accuracies of over 90% can be
achieved in classifying 14 kinds of UCNPs. This work suggests new
opportunities in handling the diverse properties of nanoscale optical
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barcodes toward the establishment of vast luminescent information carriers.

he development of new materials’ encoding strategies has

extended our capacity to acquire, store, and process
information. The ongoing development of optical multiplexing
technologies involves organic (fluorescent dyes)l_4 and
inorganic fluorophores (quantum dots,”™* carbon dot,”'® and
lanthanide-doped nanoparticles''~"") as optical information
carriers. Their emissive features in the spectral domain can be
used in multiplexed assays, imaging, and tracking of
biomolecules in vitro and in vivo.'® This has been achieved
typically by mixing the varied ratios of a fluorescence
nanomaterial, such as multicolor quantum dots,'”'® or
lanthanide-doped nanoparticles,'””’ and encapsulating them
into microsphere beads.

While color encoding is limited by the spectrum cross-talk
issue, the recent development of time-domain optical carriers
provides a new opportunity for high-capacity multiplexing by
adding transient information on emissions.”'~** Lanthanide-
doped upconversion nanoparticles (UCNPs) with sharp
emission spectra, long lifetimes, and exceptional nonblinking
and nonbleaching photostability”® are particularly suitable for
this purpose. UCNPs have been applied in high-throughput
bioassays, imaging of cellular molecules’ transport, anticounter-
feiting security inks, and data storage.””*® Encapsulation of the
Yb**-Tm*"-doped UCNPs has been demonstrated to encode
suspension arrays of microspheres, which can be time-resolved
on a stage scanning microscope.”” The Nd**-Yb**-Er**-tridoped
core/multishell UCNPs have been used in polystyrene micro-
spheres, which extends the encoding capacity by both
luminescence colors and decay lifetimes.”
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Toward the desirable nanoscale multiplexing, we recently
demonstrated a highly controlled synthesis of heterogeneous
UCNPs, which allows time-domain tuning of their emission
properties to create a large set of lifetime fingerprints.’’ We
exemplified that the three dimensions of excitation wavelength,
emission color, and lifetime profile (named as 7%, as both the
rising and decay time features are involved) can be used to
produce a vast library of nanotags, toward the applications in
data storage, security inks, single-molecule digital assay, and
super-resolution imaging.30 In the time-domain dimension, the
entire lifetime profile can be used to encode UCNPs. But we
conclude that conventional data analytics approaches are
tedious and insufficient in extracting all the features from the
time-domain profiles of UCNPs.

The recent surge of machine learning approaches has been
found useful in guiding the synthesis and modeling,®' ~*° as well
as classifying, predicting, and discovering new materials.””~**
Machine learning algorithms based on the chemical reaction
data have been used to predict the formation conditions for
vanadium selenite crystallization of metal—organic framework
materials with a success rate of 89%."" The ability of deep
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Figure 1. Lifetime profiles of single UCNPs under time-resolved wide-field microscopy. (a) Peak moment images (the brightest frame) were selected
from the series of time-resolved images. The 808 nm laser excitation pulse of 200 s is used. (b) Corresponding images of part a after selecting the
single nanoparticles. (c) Lifetime profiles of the typical 20 single UCNPs extracted from the time-resolved image series of sample-1 to -14. (d)
Similarity in the lifetime profiles of single UCNPs between sample-1 and sample-2 and between sample-11 and sample-12. Scale bar: S ym.
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Figure 2. Data processing and deep learning framework for recognizing the lifetime fingerprint of single UCNPs. The as-collected images were first
preprocessed by selecting the single nanoparticles. Then the artificial neural network extracts the curve features of each type of UCNPs and provides
the optimized CNN and classification boundaries by getting feedback from accuracies.

learning approaches has been shown in recognition and
classification of the highly nonlinear data sets** and the curve
features from optical materials by using an artificial neural
network.**®

Here, we evaluate the classification of the lifetime profiles
among different batches of UCNPs using a deep learning
algorithm. This is achieved by the time-resolved imaging of
single UCNPs to generate the data set of lifetime fingerprints.
We show that deep learning can intelligently define a territory
for each type of 14 batches of UCNPs with accuracies higher
than 90% achieved. This work suggests the potentials in
handling the growing amount of optical information to build a
nanoscale material library for supercapacity multiplexing
applications.

Here two series of nine batches of Yb**-Tm**-codoped and
five batches of Nd**-Yb**-Er**-tridoped UCNPs were inves-
tigated. The morphological and optical characterization results
are provided in Table S1 and Figures S1—S6. We employ a wide-
field microscope system to achieve high-throughput data
collection (Figure S7). Compared to the point-by-point
scanning approach, the wide-field microscope can simulta-
neously collect the lifetime profiles from hundreds of single
nanoparticles from each measurement. The exceptional optical
stability of single UCNPs affords these nanoparticles with
continuous imaging for more than 250 min (see Figure S8). The
sequence of 75 consecutive frames of time-resolved images with
the time-gated window of 50 ys was collected by an intensifier
coupled CMOS camera.

Figure 1a shows the typical time-gated images at the intensity
peak for 50 s, from the series of time-resolved images, which
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show hundreds of Nd**-Yb**-Er**-codoped UCNPs from each
batch of the synthesis. As the unavoidable aggregates may exist
in the imaging field of view, we selected the single nanocrystals
by performing the OTSU data processing algorithm (see
Materials and Methods in the Supporting Information). Figure
1b is the corresponding selected single-particle images of Figure
la, each containing ~90 single nanoparticles. The typical
lifetime profiles of the typical 20 single UCNPs are displayed in
Figure 1c, representing the data collected from the samples from
batch-1 to batch-14. The variations of the emission intensities
are due to the uneven Gaussian distribution of the excitation
laser and the nonlinear power dependence of the upconversion
emission behavior.”® The collected signals of each time-domain
fingerprint are also noisy, due to the limited photons that can be
collected within each 50 ys time-gated window. To facilitate the
data analysis, all the lifetime profiles have been normalized at the
lifetime peak moment. Notably, Figure 1d shows the typical
challenge in differentiating the highly overlapped lifetime
profiles from any two batches of UCNPs.

The deep learning algorithm, based on an architecture of
convolutional neural networks (CNN), was implemented to
define the classification boundaries of the lifetime fingerprints of
the 14 batches of UCNPs. Figure 2 illustrates the deep learning-
aided decoding process. A deep learning package Pytorch was
used to train the image series and validate and test the neural
network. Before classifying the time-domain single nano-
particles, the network architecture of deep learning was
established (Supporting Information section 4). The decreasing
categorical cross-entropy loss curves in Figure S9 show that all
the hyper-parameters were well-optimized after adjusting the
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Figure 3. Deep learning aided decoding of lifetime fingerprints of single UCNPs. (a and b) One set of classification result images for the Yb—Tm series
UCNP from sample-1 to sample-9 UCNPs (a) and Nd—Yb—Er series UCNPs from sample-10 to sample-14 UCNPs (b). For the visualization
purpose, pseudocolor is used to represent each type of single UCNPs. (c and d) Mean classification accuracy was obtained through the cross-validation

experiment.

key aspects to establish the networking architecture. We
employed the optimum network structure, which consists of
two convolutional networks followed by two fully connected
networks (FC1 and FC2) to define the feature coverage and the
classification boundaries for each batch of UCNPs. The two 1D
convolutional layers used the element-wise function ReLU6(x)
= min(max(0, x),6). The hyper-parameters of the network were
optimized by choosing the highest average accuracy of the
validation curves of the number of neurons (Figures S10 and
S11), the dropout rate (Figure S12), the batch size (Figure S13),
and the learning rate (Figure S14). After the network structure
was determined, we verified the deep learning algorithm by
randomly selecting a set of unused lifetime profiles from the two
series of the 14 batches of UCNPs, e.g,, the sample-1 to -9 of
Yb**-Tm*"-doped UCNPs and sample-10 to -14 of Nd**-Yb**-
Er**-doped UCNPs.

We first collected seven sets of time-resolved sequences of
images from each batch of UCNP samples, each of which
contains the lifetime fingerprints of ~600 single nanoparticles.
We randomly used the first six sets of imaging data from each
batch of UCNPs to train the machine to establish a neural
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network, with the remaining set of data used as validation
analytes. After one training-and-testing process, the testing error
for the 14 image sequences was obtained. To eliminate the
random effect, we repeated the cross-validation experiment 50
times, in which ~500 single nanoparticles of each type were
randomly selected for testing and the remaining 100 were used
for training. The mean classification accuracy and deviation of
errors for each type of UCNPs were computed through these 50
random experiments.

For visualizing the classification result, we marked each type of
single UCNPs with a pseudocolor. One representative set of
results from sample-1 to sample-9 and sample-10 to sample-14 is
displayed in Figure 3a and b. The statistical distributions of
classification accuracy with error bars by running the experiment
of training and validation 50 times are displayed in Figure 3¢ and
d. We achieved the mean classification accuracies for each
UCNP sample with all the values reaching over 90%. Tables S2
(Yb**-Tm>*"-doped UCNPs) and S3 (Nd**-Yb**-Er**-doped
UCNPs) show the high classification accuracy between two
samples over 20-trials under different neurons per FC layers.
Their classification accuracies are hovering over the range 91%—

https://doi.org/10.1021/acs.jpclett.1c02923
J. Phys. Chem. Lett. 2021, 12, 10242—10248


https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c02923/suppl_file/jz1c02923_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c02923/suppl_file/jz1c02923_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c02923/suppl_file/jz1c02923_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c02923/suppl_file/jz1c02923_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c02923/suppl_file/jz1c02923_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c02923/suppl_file/jz1c02923_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c02923?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c02923?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c02923?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c02923?fig=fig3&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c02923?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry Letters

pubs.acs.org/JPCL

100%. The small number of dots with mismatched colors
represent the error recognition (e.g., there are some
misrecognition dots of sample-1 in the image of sample-2, and
sample-12 in the image of sample-11), which is mainly caused by
the unavoidable noise background (consistent with the curves in
Figure 1d).

We highlight that the brightness of single nanoparticles is
important to ensure the data quality for high recognition
accuracy. For the nanoparticles of less brightness (see new
sample-15, which has a half intensity decrease compared to the
brightest sample-13 in Figure S15a), the relatively large variation
in the lifetime profiles appeared from the same batch (Figure
S15b). Therefore, less accurate classification can be achieved.
Once a batch of the less bright nanoparticles is added into the
library, adding another batch of bright sample-16 does not help
to compensate for the low overall accuracy (Figure S15c).
Moreover, even well-trained machine learning models may
contain unavoidable errors due to the noise in the training data
and measurement limitations. Therefore, strategies around
synthesizing bright nanoparticles and improving the measure-
ment efficiency under the limited budget of detectable photons
are still needed to facilitate the deep learning approaches to be
used in classifications of the lifetime profiles of single UCNPs for
nanoscale optical multiplexing applications.

Through the use of time-resolved wide-field microscopy, we
have achieved the high-throughput collection of the complex
lifetime profiles of single UCNPs from multiple batches of
controlled synthesis. These provide sufficient data sets for the
deep learning algorithm development to classify the difference in
the optical fingerprints among the multiple batches of UCNPs.
We achieved in this work accuracies over 90%. The controlled
synthesis of bright and optically stable single nanoparticles with
characteristic lifetime fingerprints provides an untapped
opportunity for nanoscale optical multiplexing. A deep learning
algorithm provides a powerful way to assist the accurate
decoding of nanoscale objects. This work further suggests that
future synthesis of bright and uniform nanoparticles with
tunable optical properties at single-particle level can be used to
produce the optical fingerprints from the multiple optical
dimensions, e.g., spectrum, lifetime, polarization, and intensity,
and uses them to expand the current library of nanoparticle
barcodes for supercapacity optical multiplexing. Assignments of
these uniform and bright optical information carriers in
nanoscale with the unique and distinguishable optical signatures
will expand the analytical technology capacities and accelerate
high-throughput biomolecular discoveries.
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