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1. Introduction

In recent years, researchers in the fields of quantum imaging 
[1–5] and classical optical imaging have paid more attention 
to ghost imaging (GI) [6–15] because of its high resolution, 
anti-jamming and high sensitivity for very weak signal. With 
the advantage of needing one bucket detector (BD) without 
spatial resolving power, GI has significant potential applica-
tive value in remote sensing, medical treatment and micro-
scopic imaging. At present, researchers are working to move 
GI from experimental evaluation towards real-world appli-
cations. However, the low signal-to-noise ratio (SNR) of GI 
algorithms based on thermal light (pseudo-thermal light) make 
it difficult to meet application requirements. Thus, improving 
the image quality of GI is one of the key problems that must 
be solved.

In order to solve this problem, many scholars have 
researched related areas extensively. For example, an algo-
rithm called normalized ghost imaging (NGI) is proposed 
in [9], and this has a more appropriate weighting factor 
applied to the ensemble average of the estimated object. This 

algorithm shows a remarkable enhancement compared to the 
traditional GI algorithm [6]. On the basis of correspondence 
ghost imaging (CGI) [10–12], proposed by Luo et  al, this 
method has been enhanced as positive–negative correspond-
ence ghost imaging (P–NCGI) [13, 14] and double-threshold 
time correspondence imaging (DTTCI) [15]. Although the 
reconstructed image quality is far better than for GI, it is not 
comparable with the imaging quality of normalized correla-
tion imaging. Compressive sensing (CS) [16] and adaptive 
compressive ghost imaging (ACGI) [17–19] have the merit of 
high resolution. However, a more complex image with expen-
sive memory requirements can lead to computation times of 
tens of minutes or longer. Iterative denoising of ghost imag-
ing (IDGI) [20–22] shows much better performance than 
differ ential ghost imaging (DGI) [23] through estimating the 
noise via the conventional GI algorithm, without consider-
ing the universal practicality of the threshold selection [20]. 
Following the above cases, the aim of this paper is to propose 
an innovative method for improving the SNR value using an 
iterative algorithm based on NGI, without requiring the intro-
duction of other GI methods for noise estimation.
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Abstract
An approach for improving ghost imaging (GI) quality is proposed. In this paper, an iteration 
model based on normalized GI is built through theoretical analysis. An adaptive threshold 
value is selected in the iteration model. The initial value of the iteration model is estimated 
as a step to remove the correlated noise. The simulation and experimental results reveal that 
the proposed strategy reconstructs a better image than traditional and normalized GI, without 
adding complexity. The NIDGI-AT scheme does not require prior information regarding the 
object, and can also choose the threshold adaptively. More importantly, the signal-to-noise 
ratio (SNR) of the reconstructed image is greatly improved. Therefore, this methodology 
represents another step towards practical real-world applications.
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Normalized iterative denoising ghost imaging based on 
the adaptive threshold (NIDGI-AT) is proposed to remove 
the noise based on NGI. Firstly, we theoretically analyze 
why the SNR of NGI is higher than GI, and build an itera-
tion model based on NGI from the point of view of removing 
the noise. Secondly, the initial value of the iteration model 
is estimated as a step towards removing the correlated noise, 
and the optimum factor of the correlated noise is obtained 
through simulation experiments. Finally, the iterative selec-
tion method for the adaptive threshold based on normalized 
iterative denoising GI is designed. It is shown that it can 
improve the quality of the reconstructed image effectively 
compared with NGI and resist the influence of background 
noise at the same time.

2. Theoretical scheme and simulation

The experimental setup, shown in figure 1, is a GI system. The 
pseudo-thermal light is separated by a beam splitter (BS) into 
two correlated arms. In the signal arm, the light goes through 
an Obj (object) and the total intensity is collected by the BD. 
In the reference arm, the light intensity distribution is received 
by the charge-coupled device (CCD) detector. Then the target 
image is obtained via the second-order correlation operation 
[24] of two optical signals. In GI, the traditional second-order 
correlation fluctuation function can be written as [25, 26]

G x I I x I I x ,2
B R B R( ) ( ) ( )( )∆ = − (1)

where I xi
R ( )( )  is the reference detection value, x is the trans-

verse spatial coordinate and the bucket detection is recorded 
as I I x T xi
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Equation (1) can be expressed as
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Two papers [9, 10] showed that NGI improves image 

 quality greatly compared to traditional GI. Combined with 
equation (3), we can obtain another form of NGI

Figure 1. Schematic of the experimental setup.
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and = ∑′ =T I S
K i

K i1
1 B R/( ) , where x x,2( )σ  is the autocorrelation 

coefficient. At present, the methods used to remove noise in 
GI concentrate on analyzing the optical system and the modu-
lation of the light field. From the viewpoint of NGI, we ana-
lyze the internal noise sources and study effective methods 
for removing the background noise. Equation (5) shows that 
every pixel of the image can be divided into three parts from 

the viewpoint of denoising: T x x x,
S

1 2
R

( ) ( )σ  is the real image 

without noise in the GI of a pseudo-thermal light source. 
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x x T x,
S x x
1 2
R

( ) ( )σ∑ ′ ′≠ ′ , which comes from coherent light 

sources and a limited number of measurements, can be under-

stood as the background noise of the system. x x,
S x
1 2
R

( )µ σ∑ ′′  

shows part of the background noise removed by NGI, and this 
is also the reason that the imaging quality of NGI is superior 
to that of traditional GI.

However, in equation  (5), the middle and third parts are 
not absolutely equal, and thus the background noise is not 
completely removed; the residual noise is expressed as e. This 
background noise is also found in experiments. So, an itera-
tive denoising model is established to obtain a better quality 
reconstructed image based on NGI by removing the residual 
noise e, and the model is expressed as
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where T x( )′  is the retrieved NGI image, and cINGI j( )is the 

noise we expect to be suppressed, which can be expressed as 

σ= ∑ +′ ′≠ ′c x T x x eINGI ,j
S x x
1 2
R

( ) ( )( ) . The removed noise in 

NGI is S T x x1 ,x xR
2/ ( )σ∑′ ′≠ ′ . The noise estimated from the 

iterative denoising model is represented by e.
The model for removing noise has been given, and then the 

initial value should be estimated—according to the definition 
of NGI [9], we deduce that
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To implement NGI, which can dramatically enhance 
the SNR, we need to define the value of x in the num-
ber i measurement O x S I xi N

i i
R( ) ( )( ) ( )δ= . The differ ential 

bucket signal can be written in an operative form as 

= −S I S I SN
i i i

i iB R B R/ /( ) ( ) ( )
( ) ( ), and the value of the reference 

arm signal is I x I x I xi i
iR R R( ) ( ) ( )( ) ( )

( )δ = − .
When K is large enough (such as 104), both theoretical 

analysis and experimental results show that its value changes 
little, for example increasing or decreasing by 1, so it has 
little effect on the result. Hence it is difficult to estimate the 
noise of the image. Then, from equations (6) and (7) we can 
obtain
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where t is a factor of the correlated noise of t and et is the cor-
related noise of the reconstructed image with t. The K value is 
generally of the order of magnitude of 104. Choosing a t that 
is too small results in the image being fuzzy, and too large 
a t leads to poor noise removal. So, we obtain the range of t 
(100  ⩽  t  ⩽  900) according to the experience of the simula-
tion data. It is clear that t is much smaller than K, and the nor-
malized value is relatively small, too. Therefore, we think that 

K O x1 i K t
K

i1/ ( )∑ ′= − +  is close to 0, and then the equation (8) can 
be converted into

=
−

+−G x
K t

K
G x e .K K t tNGI

2
NGI
2( ) ( )( ) ( ) (9)

So, the normalized iterative denoising GI model can be 
obtained from equations (6) and (9)

Figure 2. Reconstructed images of several typical t values from c  =  0.46. (a) Digital mask of ‘BUAA’, (b) image retrieved with t  =  100, 
(c) image retrieved with t  =  300, (d) image retrieved with t  =  600 and (e) image retrieved with t  =  800.

Table 1. SNR for different t values.

t 100 200 300 400 500 600 700 800 900
SNR 1.45 1.42 4.72 1.36 1.51 1.26 1.42 1.53 1.37

Laser Phys. Lett. 14 (2017) 025207
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where j is the number of iterations of the NIDGI-AT scheme. 
Through experiments, it is found that the SNR of NIDGI-AT 
reaches optimality when j  =  3. This j value will be used in the 
simulations and experiments in this paper. To obtain a better 
value of t for the estimation of the correlated noise, a compu-
tational experiment is performed. First of all, the SNR of the 
retrieved image is defined as [27–29]

U r c T

U r c U r c
SNR

,

, ,
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where m, n represent the array of an object of size m  ×  n 
pixels, U(r, c) and U0(r, c) denote the gray tone of the  
(r, c)th pixel of the target object and the reconstructed image, 
respectively, and T U r c,m n

1
0( )= ∑×  is the average gray tone 

of the object. As shown in figure 2, in the case of a random 
selection of a threshold c, a few typical t values corre sponding 
to the image are reconstructed using the normalized itera-
tive denoising GI method. We can see that when the t takes 
different values, the image quality is obviously different. 
Figure  2(a) illustrates the original. Figures  2(b)–(e) are the 
image effects of t  =  100, 300, 600 and 800, respectively. It is 
obvious that figure 2(c) is better than the others, so a suitable 
t value directly affects the quality of the reconstructed image.

Figure 2 indicates the results for the qualitative compariso n 
of typical images. In order to obtain the best t value, we also 

study the corresponding SNR values for different t values 
quantitatively. Table 1 demonstrates the corresponding distri-
bution of different SNR values when t is between 100 and 900 
for the conditions K  =  20 000 and c  =  0.46. As can be seen 
from the quantitative SNR, the image quality is optimal when 
t  =  300 when normalized iterative denoising GI is being used, 
while the SNR of the image reaches 4.72. Therefore, the value 
of t is set to 300 in the next simulation experiment.

The threshold c is one of the important parameters in 
NIDGI-AT, as shown in equation  (10). Setting the threshold 
randomly is obviously unreasonable. Whether the threshold is 
too large or too small, the quality of the reconstructed image 
will be reduced. Furthermore, a reconstructed image with an 
inappropriate threshold cannot be implemented for an engi-
neering application. Therefore, an adaptive threshold selection 
method based on iteration is designed in this paper [30]. Next, 
we discuss the iteration process for the adaptive threshold. 
Firstly, an initialization parameter is required. The initializa-
tion threshold c (0  ⩽  c  ⩽1) is 0, the imaging system measure-
ment number is K, the first-level iteration step threshold is 0.1 
and the second-level iterative step threshold is 0.02. We set the 
input SNR value Q according to the actual engineering appli-
cation from the sample. Secondly, we begin the first-level itera-
tion (c1  =  c  +  0.1) using the normalized iterative denoising GI 
scheme. If the SNR value q from the NIDGI scheme is greater 
than Q, then the program ends and outputs the reconstructed 
image. If Q  −  q  <  0.5, then we enter the second-level itera-
tion, the iterative step threshold (c2  =  c1  −  0.02) based on the 
first-level iteration. Otherwise, it enters the next program of 
the first-level iterative. Thirdly, when the program enters the 
second-level iteration, we repeat step 2. The program will ter-
minate if Q  −  q  <  0.5 is true. So the selection of the adaptive 
threshold can be realized. The SNR will be relatively large 
when the threshold c is within the 0.40–0.60 range from the 
simulation of the digital mask image ‘BUAA’. So the first-level 
iteration threshold c is from 0.40 to 0.60. The imaging time 
is decreased by reducing the range of the threshold selection 
based on the training sample in the engineering application. Of 
course, if the SNR of image still does not reach the target value 
when the selections of the adaptive threshold is finished, we 
need to increase the number of measurements appropriately, 
and then repeat the processes described above.

Figure 3. Simulated results for fluctuation GI, NGI and NIDGI-AT,  
with 20 000 measurements. (a) Digital mask of ‘BUAA’;  
(b) fluctuation GI image, with SNR  =  1.44; (c) NGI image, with 
SNR  =  1.91; and (d) NIDGI-AT image in the case where c  =  0.56, 
with SNR  =  5.93.

Figure 4. The SNR of fluctuation GI, NGI and NIDGI-AT for 
different numbers of measurements.

Laser Phys. Lett. 14 (2017) 025207
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For the purpose of illustrating the simulation results 
for the NIDGI-AT scheme, we adopted various schemes of 
GI for image quality comparison. Figure  3(a) is the origi-
nal mask image, and figures 3(b)–(d) show the image effect 
through fluctuation GI, NGI and NIDGI-AT reconstruction, 
respectively, under the conditions of 20 000  ×  measurement. 
To unify the quantification to compare the image quality of 
different algorithms, all the images are normalized to [0, 1]. 
The speckle is produced artificially in the simulation, which 
is consistent with a negative exponential probability distribu-
tion. The average speckle size is about 1 pixel size and the 
number of measurements K is equal to 20 000. The improve-
ment of image quality in figure 3(b) compared with figure 3(c) 
proves that NGI obtains a higher SNR than traditional GI. The 
SNR in figure 3(d) reaches 5.93, which is better than that in 
figure 3(c). This is mainly because the correlated noises and 
background noise of the image are removed by the scheme of 
this paper.

In order to further study the contrast of the SNR from dif-
ferent measurements, the variation of the SNR of 40 points 
to the total number of measurements is shown in figure  4. 
Figure  4 indicates an increasing trend of the SNR corre-
sponding to fluctuation GI, NGI and NIDGI-AT. The SNR of 
the NIDGI-AT scheme grows fastest, reflecting the advantage 
of the scheme proposed in this paper once again. However, it is 
not difficult to see that the SNR of NGI is slightly higher than 
that of NIDGI-AT when the measurement times are between 
0 and 5000. Here we consider that these three schemes have 
a comparative reconstruction effect, mainly because the num-
ber of measurements is too small to judge the performance of 
the program. Compared with the other two methods, the SNR 
of the new scheme in this paper increases significantly when 
there are more than 5000 measurements.

3. Experimental results

The experimental setup, shown in figure 1, is a GI system. A 
linearly polarized 632 nm He–Ne laser beam is projected onto 
a ground-glass disk rotating at 3 rad min−1 to produce a field 
of randomly varying speckles. This pseudo-thermal light is 
then separated by a BS into two correlated arms. In the refer-
ence arm, the light goes directly to the detector of the CCD 
cameras (Imaging Source VC-2MC-M340E0), whose active 
image pixels are 2048(H) * 1088(V). We select the region of 
the 300(H) * 300(V) pixel as the reference signal from the 
CCD. In the signal arm, the light goes through an Obj, and the 
total intensity is collected by the BD. The BD is replaced by 
a CCD camera of the same type, but it needs to be summed 
in the correlation computation. The distance from the beams 
to the object, and from the beams to the reference detector, is 
represented as lB and lR, respectively. Here lB  =  lR  =  245 mm. 
The letter K is used as a digital mask with an actual size of 
5 mm * 5 mm. The computer used for the image reconstruction 
is a Lenovo desktop machine (CPU: Intel Core i7-4700 dual 
core, 2.40 GHz, 4 GB). The total number of measurements is 
20 000. Figure 5 illustrates the experimental results for differ-
ent GI methods. Figure 5(a) is the original image of the digital 
mask. Figure  5(b) shows the image reconstructed using the 
fluctuation GI method. Figure 5(c) is the result reconstructed 
using NGI. Figure 5(d) demonstrates the NIDGI-AT image in 
the case where c  =  0.5. The experimental results indicate that 
the SNR of this paper is increased to 6.28 compared with NGI.

4. Conclusion

In conclusion, we propose a scheme that may be called 
NIDGI-AT. A universal model of iterative denoising based 
on NGI is established by analysing the correlated calculation 
model. Meanwhile, the initial value of the iteration model 
is estimated and the optimum factor for correlated noise is 
obtained through the simulation experiments. The background 
and correlated noise are efficiently suppressed by the nor-
malized iterative denoising GI method mentioned in this paper. 
Without increasing the complexity or having a preference for 
the object, it is shown that NIDGI-AT offers better perfor-
mance than NGI. Adaptive threshold selection to remove noise 
is also implemented in this paper. Therefore, this method can 
further advance GI towards practical application. Combined 
with the advantages of super-resolution and anti-interference, 
GI with a high SNR has extraordinary potential application 
value in medical diagnosis and treatment, and industrial detec-
tion. Of course, we have only studied black-and-white mask 
images through simulation and experimentation in this paper. 
Whether grayscale images can be affected by normalized itera-
tive denoising GI will be a topic of future research for us.
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